3,336 research outputs found

    Preface of Bioremediation through Rhizosphere Technology

    Get PDF
    The use of MICROORGANISMS to remediate environments contaminated by hazardous substances is an innovative technology and an area of intense interest. Although biological technology has been used for decades in wastewater treatment, recent examination of the cost-effectiveness of this technology has led to its application to hazardous chemicals at waste sites. Successes obtained by using the natural metabolic capabilities of bacteria and fungi to clean up soil, sediment, and water have encouraged continued interest and research in bioremediation

    Biological Degradation of Pesticide Wastes in the Root Zone of Soils Collected at an Agrochemical Dealership

    Get PDF
    Evidence for enhanced microbial degradation of xenobiotic chemicals in the rhizosphere, a zone of increased microbial activity at the root-soil interface, continues to accrue, suggesting that vegetation may play an important role in facilitating bioremediation of contaminated surface soils. For sites tainted with pesticide wastes, such as at agrochemical dealerships, establishing vegetation may be problematic because of the presence of herbicide mixtures at concentrations severalfold above field application rates. Nonetheless, herbicide-tolerant plants exist that can survive in these environments, and they are ideal candidates for testing the influence of rhizosphere microbial communities on the degradation of pesticide wastes. Experiments in this laboratory have tested whether a commodity plant such as soybean could survive in soil from a pesticide-contaminated site containing a mixture of three predominant herbicides, atrazine, metolachlor, and trifluralin, and if its presence could enhance biodegradation. Although soybean survival in this soil was high, its presence did not enhance the degradation of the chemicals. Tests with nonvegetated soils and rhizosphere soils from Kochia sp., a herbicide-tolerant plant, showed enhanced degradation of these chemicals in rhizosphere soil. Also, Kochia sp. seedlings have emerged from rhizosphere soils spiked with additional concentrations of the three test chemicals, indicating the ability of these plants to survive in soils containing high concentrations of herbicide mixtures

    Effect of Sediment on the Fate of Metolachlor and Atrazine in Surface Water

    Get PDF
    In aquatic environments, pesticides can partition between the dissolved phase and particulate phase depending on the type of suspended sediment present and the physical and chemical properties of the pesticides and water. Particulate matter and sediment can alter the bioavailability of contaminants to organisms and therefore influence their toxicity and availability for microbial degradation. Experiments were conducted to determine the degradation of atrazine (6-chloro-N-ethyl-N′-(1-methylethyl)-1,3,5-triazine-2,4-diamine) and metolachlor (2-chloro-N-(2-ethyl-6-methylphenyl)-N-(methooxyprop-2-yl)acetamide) in surface water, and to evaluate the contribution of sediment to their dissipation. Sediment significantly reduced concentrations of atrazine and metolachlor in the surface water as a result of greater degradation, evident by increased quantities of degradates in the surface water, and the partitioning of the herbicide or herbicide degradates in the sediment. First-order 50% dissipation time (DT50) values for atrazine and metolachlor were 42 and 8 d in the surface water-sediment incubation systems, which were almost four times less than the DT50s calculated for the sediment-free systems. The results of this research illustrate the importance of sediment in the fate of pesticides in surface water. Greater comprehension of the role of sediment to sequester or influence degradation of agrichemicals in aquatic systems will provide a better understanding of the bioavailability and potential toxicity of these contaminants to aquatic organisms

    Synthesizing Programs with Continuous Optimization

    Full text link
    Automatic software generation based on some specification is known as program synthesis. Most existing approaches formulate program synthesis as a search problem with discrete parameters. In this paper, we present a novel formulation of program synthesis as a continuous optimization problem and use a state-of-the-art evolutionary approach, known as Covariance Matrix Adaptation Evolution Strategy to solve the problem. We then propose a mapping scheme to convert the continuous formulation into actual programs. We compare our system, called GENESYS, with several recent program synthesis techniques (in both discrete and continuous domains) and show that GENESYS synthesizes more programs within a fixed time budget than those existing schemes. For example, for programs of length 10, GENESYS synthesizes 28% more programs than those existing schemes within the same time budget

    Methemoglobinemia: An unusual cause of postoperative cyanosis

    Get PDF
    AbstractMethemoglobinemia, although rare, must be considered in surgical patients presenting with acute respiratory distress and cyanosis. We report two cases of methemoglobinemia in patients undergoing aortic reconstruction. The first patient developed methemoglobinemia while on a nitroglycerin infusion, and the second after receiving benzocaine spray before intubation. Both patients were treated with methylene blue and ascorbic acid, with resolution of their hypoxia and cyanosis. The pathophysiology, etiology, diagnosis, and treatment of methemoglobinemia are reviewed
    corecore